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Abstract--A plate with a pre-existent through crack is considered under the action of a remote
bending moment and a remote in-plane force. The problem statement is reduced to the solution of
two coupled integral equations with strongly singular kernels. The independent variables in the
latter equations are the closure displacement and rotation angle. The corresponding closure force
and moment distributions, and the contact-crack opening boundary (the closure perimeter), are
found as functions of the remote bending·;;~ompression ratio. The validity of previously stated
analytical asymptotics for the contact boundary is examined. The dependence of the extent of
closure on the crack length·,to-thickness ratio is studied. Comparisons are made with experimental
results. IrJ 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

Difficulties caused by the closure of a through crack in a thin plate under bending have
long been recognized (Smith, 1969; Wynn and Smith, 1969; Smith and Smith, 1970; Jones
and Swedlow, 1975; Heming, 1980; Alwar and Ramachandran Nambissan, 1983). The
mechanics of crack closure has received an increased scrutiny in recent years (Joseph and
Erdogan, 1989; Young and Sun, 1992, 1993; Cordes and Joseph, 1995; Kuo et al., 1995;
Dempsey et al., 1995a; Slepyan et aI., 1995). In particular, Joseph and Erdogan (1989)
provided a plot of the closure width distribution for the case of a through-cracked plate
subjected to pure bending. Slepyan et al. (1995) provided an analytical asymptotic solution
to the latter problem valid for long cracks. The material presented therein can be considered
to pose an inverse surface crack treatment to that given much earlier by Rice and Levy
(1972). The present paper examines the dependencies of the shape and extent of closure on
the remote loading and crack length to plate thickness ratio. The formulation provided by
Slepyan et al. (1995) is adapted and extended. The title problem reduces to the solution of
two hypersingular integral equations that yield the averaged crack opening displacement
and crack face rotation. The latter quantities are coupled through the smooth closure
condition along the crack front Given that the shape of the closure region is unknown at
the outset, the solution procedure is necessarily iterative. At each iteration, the solution of
the integral equations follows the procedure standardized by Kaya and Erdogan (1987).

Consider a cracked infinite elastic plate- 'x. <x < + C/J, -- OCJ < Y < + CJ>:' (Fig. I)
of uniform thickness 217, 121 ~ h. The through-the-thickness crack oflength 211ies at Y = 0,
IXI ~ I, 121 ~ h. The plate is subjected to the action of a self-equilibrated system of the
external forces. All the external loads are sufficiently remote with respect to the crack area
for their action can be explicitly described by the distribution of the initial extensional
inplane force SO(X) and bending moment MIl(X) acting in the intact plate at Y =cc 0, IXI ~ I.

• Author to whom correspondence should be addressed. Tel. 00 315 268 6517. Fax: 00 315 268 7985.
E-mail: john(asun.soe.clarkson.edu.

4077



407S J. P Dempsey et al.

Fig. I. A through-the-thickness crack in a plate under bending and compression.

During the imposed deformation, the two sides of the crack come into the contact with the
local closure force S and bending moment M depending on X in the range IXI ::;; I. The
shear force within the contact region is assumed to be zero. The distribution of the local
closure forces SeX) and M(X) and the contact area are to be determined.

The problem can be considered as the superposition of three sub-problems. The first
is a plane problem (the X, Y-plane) with a through-the-thickness crack (Fig. 2(a)) under
action of an inplane force, S(X). The second is a bending problem for a Kirchhoff--Poisson
plate containing the same crack (Fig. 2(b» with a contact-induced bending moment, M(X).
The third problem is for an elastic layer containing a part-through surface crack (Fig. 2(c))
with a contact induced closure stress distribution E(X, Z) acting on the region under
closure, -h::;; Z::;; h---a, where b(X) = 2h--a(X) is the closure width.

The paper by Slepyan et al. (1995) provides a thorough exposition of the integral
equation formulation to the above superposition scenario. In the following, note that the
closure-induced crack surface interaction force and moment SeX) and M(X) are defined in
terms of the stress distribution in the closure strip

fh f"S(X) = '.. I(X, Z) dZ, M(X) = ZI(X, Z) dZ
h~h

(I)

and that veX) and <t>(X) are the additional displacement and rotation of one end of the
strip (Fig. 2(c» relative to the other due to the crack opening displacements. On the other
hand, v(X) and <t>(X) can be defined in terms of the closure contact problem,

I Ih

l'(X) = !I ((X, 0+, Z) dZ, ej)(X) =
... ',, __ 11

3 f"- J Zv(X,O+,Z)dZ
2h"

(2)

where 2z7(X, 0+, Z) is the crack opening displacement, and E(X, Z) is the stress distribution
in the closure strip.

The governing integral eq uations,

Eh fl v(e)
·············-------dc =

7T:;(¢-X)" -

Eh"11 (!)(() 3. 3

..
" - , d¢ = . i\P'(X) -- M(X)

Q7T:. ;(C;;-X)- h h

associated contact eq uations,

(3)
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Fig. 2. Sub-problems: plane with a through crack under the action of a distributed (a) in-plane
force and (b) bending moment; (c) edge-cracked strip subjected to extension and bending with

closure.

and stress intensity factor.

1 J~({ y .. 3 y }K(a) = .. r--·--~-- F,(~)S(X) + 1- F,,,(~)M(X)
,,/2h (1 0 32

1
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(4)

(5)

are stated here without derivation. The full details are given in the paper by Slepyan et al.
(1995). In the above equations. Q =(1 +1')/(3+1') and E' = £/(1-1'2), while (Dempsey el
al., 1995b; Slepyan et al.• 1995)

"(X) = a(X)
~ 2h (6)

7

A -" 'J)liei
;-JI - L 'Ji ~,

i"o"O

(7)

)

F ('0) =" .""s ~ L. (x, ~ ,

1=0

7

}~,,(() = I (X7"i
i"",O

(8)

The coefficients Ii? and (Xi' (i = 0,1, ... ,7) in eqns (7) and (8), respectively, are provided in
Slepyan et al. (1995). The kernel (~_X)-2 can be considered as the generalized limit of
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9tQ .. 2, Q = ~ - X + i Y when Y -+ O. Every Y, Z section of the plate has the shape of an
edge-cracked strip as in Fig. 2(c). Under the assumptions of the line spring model (Rice
and Levy, 1972), the deformation of each segment, X = ~h - h < Z < h, is derived using
the solution of the plane contact problem. This procedure is acceptable as long as the ratio
of the length of the crack to the thickness of the plate 1/2h is sufficiently large.

The normalized extent of closure is defined by

U(X)
h(X) 2h-a(X)
--- = .-----..-.- ..- = 1- ((X)
2h 2h

(9)

The shape of the contact area, U(X), or rather the shape of the open portion of the through­
the-thickness crack, ((X), has yet to be determined. Given that the crack length a(X)
naturally seeks its own length under the unilateral closure conditions such that the crack
surfaces end in smooth tangential contact at the crack tip, the transition from closure to
contact is found by specifying that the crack-tip stress-intensity-factor in eqn (5) be zero.
That is,

K(a) = 0 forlXI < 1

The condition of unilateral contact is

S~O

CLOSURE OF A THROUGH CRACK

The inversion of the expressions in eqn (4) gives

E' { J }S(X) =r;;:X""I/(Ov(X) + j :Xsm(O¢(X)

E'{ h. '}(3/h)M(X) = - fj; :Xm,(Ou(X) + 3 :Xss(O¢(X)

where

(10)

(11)

(12)

(13)

By substituting the expressions in eqn (12) into eqn (5), the condition in eqn (10) becomes

in which

v(X)

hfj;,(X)

q)(X)
---------- ---.-.-.-

2fj;,,> (X)
(14)

The latter equation, in turn, simplifies the expressions in eqn (12) as follows:

E' F,,, 3.. h E'F,
S(X) = ------ v(X),- M(X) =-('~¢(X)

h 3 .'2J",

The integral equations in (3) may now be expressed in uncoupled form as

(15)

(16)
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(17)

For the cases studied numerically in this paper, the plate is considered under the action of
a uniform and remote extensional force per unit length SO and a bending moment M O (Fig.
1). It corresponds to the uniform distribution of the initial forces in the intact plane:
SI\X) == SO and MO(X) == MO. The latter equations may then be simplified by introducing
the following normalized variables

x = X/I, I = ~/l, l;(X) = Ev(X)/So, ¢(x) = Eh¢(X)/3So

The equations in (17) now take the form

where

(18)

(19)

(20)

The above normalization with respect to the inplane force eqn (18), containing So in the
denominator, does not cover the case of pure bending (SO = 0) and also becomes difficult
to handle numerically when SO -> 0; in this case, it is preferable to choose

whereupon the equations in (17) take the form

~f I (~~~~)-2dt+ f ~~(;~~.') lJ(X) = fm)l

~rI (1~(~)2 dl + ~~ ~~-(r~\~2) ¢(x) = Qf
where

(21 )

(22)

(23)

Note here that the case of both SO and MO tending to zero at the same time is not defined
for this problem formulation unless either the ratio IJ(m)l) is specified. An important
additional feature, characteristic of receding contact problems, is that the extent of closure
is influenced by the ratio of the initial in-plane vs out-of-plane loads, not by the individual
intensities. For either normalization, the expression in (14) is now given by
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l!(X) rP(x)
~~-(X) = g;jJ(X) (24)

Clearly, the solution of the equations in (19) or (22), subject to the condition in eqn (24),
requires the specification of three quantities: the crack length to plate thickness ratio Ilh,
the initial in-plane versus out-of-plane load ratio I?, and Poisson's ratio v. The extent of
closure is uniquely defined by the specification of the above three quantities.

The strongly singular integral equations in (I9) and (22) are readily solved following
the procedure established by Kaya and Erdogan (1987). The unknown in-plane dis­
placement v(x) and rotation ¢(x) are represented in the form of a truncated Chebyshev
polynomials of the second kind with undetermined coefficients as follows

N ," __'"

6(x) = I ViU2j(x)vil-x2
i .... 0

;\ "'-"'"

(~(x) = I 1fl,u2,(x),jl-x2

;::" 0

(25)

The representation in eqn (25), in recognition ofthe symmetrical deformations about)( = 0,
excludes U,lx) for n odd. The unknown coefficients Vi and ({>i (.I = 0, I, ... , N) are determined
separately from the equations in (19) by selecting the set of collocation points given by the
zeros of Tuv+ 1,

Xi = cos (~:\~) (26)

Following from eqns (3), (18) and (25), the closure forces along the crack line may be
calculated via

S(X) h N .

....- = - - I /'·(2;+ I)U,·(x)+ ISO I j_1) J. ..1

M(X) hit'
o = -oI qJJ(2j+ I)U2,(x)+ I

M gll/o
(27)

The functions S(X) and M(X) are accurately detennined in the vicinity of the crack-tips
since the collocation points eqn (26) are clustered near the crack-tips. The expressions in
eqn (27) quickly give S(±l) and M(±/) on noting that U2,(1) = 2j+ L

The solution procedure must proceed in a semi-inverse manner. At each iteration, a
particular perimeter is chosen; the equations in (19) [or (22)] are solved, then the difference

1'(.\') rP(x)
D(X) = r: -

Y,(X) .C0(j,(X)
(28)

is examined. The shape (X) is readjusted at each iteration until K(a) ~ 0 (to the desired
accuracy) for alljXj ~ I, as required by eqn (10).
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Fig. 3. Contact variable distributiolJ versus.\' = Xi/; ,?=, 2/3. 'iii = 10. l' = 0.3: (a) normalized in­
plane displacemelJt ,,(X) and rotation q,(X); (b) the local contact induced-in-plane force S(X)/S"
and bending moment M(X)/Mil; (c) local load ratio lfand relative through-the-thickness length of

the crack (.

Results obtained by solving the integral equations in (19) by the iteration procedure
for the case of I/h = 10, I? = 2/3 are presented in Fig. 3. The shapes of various plots shown
of the displacements (Fig. 3(a», forces (Fig. 3(b» and closure parameters I( [see eqns (29) I

and (30)d and' vs the normalized coordinate x = X/I are more or less typical for the whole
range of possible remote loading combinations.

LIMITING CASES AND NUMERICAL COMPARISONS

The paper by Slepyan et al. (1995) discussed limiting cases and asymptotic solutions
for the long cracks (relative to the plate depth). Three possible scenarios have been outlined
identifying the influence of the remote load ratio 1;'.

The first case relates to the case of the load in the range 0 ~ I? ~ 1/3. In this case there
is no crack opening, the sides of the crack stay in full contact, and the behavior of the plate
is identical to the behavior of an intact one.

The second case concerns the range I/3 ~ I)' ~ I and is associated with the solution of
the plane problem for the through cracked strip (Fig 2(c». It means that, in lhe central
area of a sufficiently long crack sufficiently remote with respect to the crack ends, the
distribution of the contact forces and displacements is uniform, and the corresponding
quantities can be found from the solution of the plane problem. These quantities do not
depend on the length of the crack. the only requirement is that the crack should be
"sufficiently long".

The third case If> I does not have a plane problem analogue. In the plane problem
for the through-the-thickness crack in the strip (Slepyan el al., 1995), no eq uilibrium is
possible under such a load. The plate with the through-the-thickness crack of a fixed length
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will stay in equilibrium because ofthe tensile stresses on the continuation ofthe crack Y = 0,
IXI ~ I, IZI :::; h. The asymptotics of the closure forces and displacements are dependent on
the length of the crack in this case. Analytical expressions for the latter asymptotics has
been given by Slepyan et al. (1995). The validity of the latter asymptotics requires the crack
to be "sufficiently long".

The definition of "sufficiently long" in the sense of the latter asymptotics has yet to be
ascertained. Similarly, the behavior of the contact-closure characteristics in the general case
of arbitrary length-to-the thickness ratio IIh has yet to be determined. These unknowns are
to be answered in the present work by comparing the asymptoticsin Slepyan et al. (1995)
with the results of the exact numerical analysis.

The paper by Slepyan et al. (1995) introduced the following closure parameters:

M(X)
hS(X) , I,

v(X)

h¢(X)
(29)

The quantities II and I, may be defined from eqns (5), (10), (14), (15) and (6)1 in terms of
the contact-closure perimeter (X) as

F
II = s, I,

3Fill

I Ass -- 3/1Am
-- ------_._------_...-......._----..._-----

3 Ams - 31rAmm

(30)

Remembering that ( == a(X)/2h, it is important to note that 0 :::; ( :::; I corresponds to
1/3 :::; II' I, :::; I. Under the remote load ratio 17, as the crack length increases, crack face
closure occurs over a vanishingly small closure strip equal to 2h(I - 0, in which ( -> I, (
being a measure of the through-the-thickness open region. The global closure parameters
II and I, both uniformly asymptote to unity in this situation. For the case of a uniform
initial in-plane force SCl and bending moment M Cl

, the closure width looks as (see Sections
8 and II of Slepyan et al., 1995)

h(X)

2h

1+ 3Q/j1 h' (X)

3Q(l? -I) 2h

hi (X)

2h

n (1- v2 )Aokl 2h
-_.._ _--.---------

2 j1=.~2 I
(31 )

where kf 0.7361, Ao = 0.6289. In the latter equation, since I? is infinite for pure bending,
the general closure width h(X) is expressed in terms of the expression for pure bending,
viz., h X (X)/2h. Because of the initial assumption of a vanishingly small closure width, the
expression in eqn (31) is valid only for 1j1 > 1 and long cracks; the definition of how large
(for specific I;h values) is now investigated numerically.

Consider a through-the-thickness crack of length 21 in a plate of thickness 2h that is
subjected to a remote uniform in-plane compressive force SO that stays constant. Assume
that the uniform remote bending moment M O

, and hence l)l, increase monotonically from
zero. The crack must be long: let Ilh = 10; v = 0.3. The corresponding numerically deter­
mined opening-closure borderlines for 1j1 = 0.34, 0.4, 0.5, 2/3, 0.8, I, 2, 5, 10 and 20,
respectively, are shown in Fig. 4. The borderline for I? :::; 113 is not shown, because in this
case there is no crack opening. The upper curve for 1j1 = 0.34 > 113 reveals that the through­
the-thickness crack has just started to open, with essentially a uniform extent of almost
full closure. As the remote bending compression ratio increases, the extent of closure
progressively decreases. For Iii ~ 10, the extent of closure is essentially unchanging: the
associated closure perimeter tends then to the asymptote that corresponds to the pure
bending 1j1 -> IX' case for the given crack length-plate thickness ratio.

The validity of the closure width asymptotic expressions presented in eqn (31b is
examined via the numerical comparisons shown in Fig. 5. Evidently, good agreement is
observed away from the crack-tip vicinity for fih ~ 16; the agreement deteriorates as the
relative crack length decreases (Table I). The agreement near the crack tips is not good, as
was anticipated in Slepyan et al. (1995).
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Fig. 4. Progression of the opening-closure borderline with an increasing remote load ratio. l' = 0.3,
{/11 = 10; from top to the bollom{?~' 0.34. 0.4. 0.5. 2/3,0.8, 1,2.5,10, and 20.

Variation in the extent of closure with relative crack length Ilh, given an unchanging
remote load ratio 17 = 2/3. is studied in Fig. 6(a). In connection with the discussion by
Slepyan et al. (1995) and at the beginning of this section, I)! = 2/3 belongs in the transitional
range 1j3 ~ I} ~ I. If the crack is "long", in the central area the contact characteristics
should coincide with those of the plane problem: II ~. I)! = 2/3, , ~ ,*, where (* is a solution
of the eqn (30)1 with respect to ( for I)! = 2/3. In particular, the latter relations should be
true at the center of the crack, the point X = O. which is simply the most remote with
respect to the crack ends. Figure 6(a) indicates that with respect to that criterion the cracks
can be considered "long" for I/h ~ 8.

0.3v
0.4

bl2h

0.2 II h =8 ~::::;::;:.-..e------:"£"...~Jn

12----:;;;;2;...,......

20

0.0 '-::---::~-'--~_'c:_...,---'-~---'-,_--!
0.0 0.4 0.8 XI l

Fig. 5. Validity of the asymptotic expression in eqn (31), for pure bending I? '" ex:. Numerical
results - thick solid lines; asymptotic expression thin solid lines.

Table I. Validity of the asymptotic expression in eqn (31), for pure bending 1,;' "=Xj : closure widths at the crack
center for various {Ih ratios

/ih

b(O)/2h: numerical analysis
b(0)/211 : asymptotics eqn (31 L
% difference

8 10 12 ]6 20
'--~._-'-'------.--"'---

.-......__....._----- .--------_...-_._--- _._......._--_._-
0.117 0.\01 0.0893 0.0730 0.0620
0.160 0.128 0.107 0.0800 0.0640

37 27 19 10 3
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Fig. 6. Contact boundary versus the relative crack length: (a) I)' = 2;'3. various crack length to plate
thickness ratio I!h; (b) influence of the Poisson ratio. pure bending I)' =

CRACK-TIP CLOSURE CHARACTERISTICS

The shape of the opening-closure borderline in the vicinity of the crack-tip is important,
especially with regard to comparisons with available experimental results (photographs of
actual closures) and numerical analysis, as well the nature of crack extension. At first, one
may well anticipate that heX) -- 2h as IXI -- I. Indeed, ahead of the crack-tip, the material
is fully joined. Note that both the actual crack-line displacements and the averaged dis­
placements veX), ¢(X) are not discontinuous at the crack tip. A discontinuity in the closure
perimeter heX) does not imply a discontinuous solution.

Is there a logical argument supporting ajump in the heX) as IXI-- I±O?
Consider briefly the ramifications if the extent of closure is not discontinuous at the

crack-tip. First, this implies that each crack front experiences purely compressive stresses
in the vicinity of the crack tip. However, recall that the shape of the closure perimeter is
governed solely by the remote load ratio I? = M OjhlSO I, and is not affected by the individual
magnitudes. By this argument, there would be no load magnitude that could induce tensile
stresses at the crack tip; the crack would never propagate, not for any level of the applied
load. Thus, the initial assumption leads to a physical contradiction.

However, the calculations show that, under the conditions imposed by the formulation
in this paper, the crack closure width heX) does not tend to the plate thickness 2h at the
crack tip and tends to some finite value, defined here by {io= lim1xl.lh(X)/2h, 0 ~ Po ~ I.
The Po values associated with the closure perimeters presented in Fig. 4 are listed in
Table 2.
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Table 2. Opening-contact ratio at
the crack tip (v = 0.3; I/h 00 10)

In finI

0.34 0.98419
0.4 0.92212
0.5 0.86410
2/3 0.79644
O.R 0.75335
I 0.69795
2 0.51165
5 035100

10 0.30011
20 0.27650
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The observed discontinuity in the crack closure shape apparently follows directly from
two assumptions, viz., the stress intensity factor is assumed to be zero in the through-the­
thickness direction as Z -> a(X), while the crack length -I < X < 1 is assumed to be
invariable under increasing load ratios. This profile discontinuity should disappear if the
entire contact borderline wt~re to be subject to the same fracture criterion.

COMPARISONS WITH EXPERIMENTAL RESULTS

More than two decades ago, a number of interesting photoelastic investigations of the
influences of crack closure on the local bending stresses in cracked plates were completed
(Smith, 1969; Wynn and Smith, 1969; Smith and Smith, 1970). The test geometry studied
by Smith and coworkers is shown in Fig. I, with the obvious exception that a finite
rectangular plate was used. The material of the plate selected for the experiments was Hysol
CP5-4290; for this rubber-like material (especially at higher temperatures), Poisson's ratio
is well approximated by v 0.5 (Smith and Smith, 1970). In this context, note that the
extent of closure does not vary significantly with Poisson's ratio (see Fig. 6(b».

The remote load condition in the experiment (Smith and Smith, 1970) was pure
bending, I? :::: CfJ. Figure 7 presents closure--opening curves heX) plotted for the values of
parameters that were used in the experiment (Smith and Smith, 1970). In Smith and Smith
(1970), a photograph (see Fig. 8 therein) of one experiment shows the closure configuration
and closure· opening border for the case l/h ,= 3.58. The highlighted curve in Fig. 7 cor­
responding to the latter case compares well with the closure borderline in the photograph
in Smith and Smith (1970).

bl2h V 0.5
0.8

0.4
IIh =1.00

2.44

5.54
O.0 ~~-'---'--!:--;-'--L.-'---::I-::o-'---'

0.0 0.4 0.8 XI I
Fig. 7. Numerical closure width distributions for the tests numbered 1-.4 in Smith and Smith (1970).
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Table 3. Crack center closure widths

2 3 4

/ih
1>(0)/2h: experiment
1>(0)/2h: this paper
'Yo difference

1.00 244 3.58 5.54
0.41 0.33 0.30 0.17
0.30 0.20 0.16 O.l2

28 39 47 29

The study by Smith and Smith (1970) presents experimental measurements for the
location of the minimum point b(O) of the crack-closure border (see below Table 1 in the
latter paper). That data is listed in this paper in Table 3 and compared with the numerical
results obtained in the present work. The disagreement between the experimental vs numeri­
cal crack center closure widths is substantial and not obviously dependent on the l/h ratio.
Moreover, one does not expect a higher order plate theory to alter the b(0)/2h values at the
crack center significantly. More plausible reasons for the noted differences in Table 3 would
be a varying and non-zero in-plane compression as well as the finite size of the test specimens.
The measured crack sizes should be rather reliable, as the photoelastic experiments quoted
in Table 3 were not characterized by precatastrophic surJlcial crack extensions (D. G.
Smith,1997).

D. G. Smith (1997) noted that the contact boundary could have been determined
during his thesis (not just the closure depth), as well as the distribution of the contact stress
along the closed region. He also noted that the main experimental difficulty resided in
making the cracks used to form the surface crackinthe brittle material. The surface crack
was actually created by tapping in two straight, non-twisted edge cracks into two separate
plates and then joining these two edges at the edge-crack-mouths. In the frozen stress
technique used, the custom was to stay away (if possible) from this glued interface (c. W.
Smith, 1997). The glue on this interface contracts upon curing, and even if the residual
stress caused thereby is released upon heating above the critical temperature, local residual
deformations may have occurred. The b(O) measurements reported in Table 3 of this paper
were made precisely at the right-angled symmetrical intersection of the surface crack and
the glued plane. Clearly, more experimental research on this topic is warranted.

CONCLUSIONS

The shape of the closure region and its dependence on the remote loading and crack
length to plate thickness ratio has been determined for the case of a pre-existing through
crack in a plate. The evolution of both the shape and extent of closure has been determined
in detail for the case of an increasing applied far-field moment to in-plane force ratio given
a particular crack length to plate thickness ratio. The evolution of both the shape and
extent of closure has also been determined for the casc of an increasing crack length to
plate thickness ratio given a specific applied far-field momcnt to in-plane force ratio.
Previously stated analytical asymptotcs for the lattcr two cases wcre examined quan­
titatively. Comparisons were made also with experiments completed nearly three decades
ago, although the experimental setup and material used to not provide the idealized com­
parisons desired.
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